Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38106189

RESUMO

Cutaneous melanomas are clinically and histologically heterogeneous. Most display activating mutations in Braf or Nras and complete loss of function of one or more tumor suppressor genes. Mouse models that replicate such mutations produce fast-growing, pigmented tumors. However, mice that combine Braf activation with only heterozygous loss of Pten also produce tumors and, as we show here, in an Albino background this occurs even with Braf activation alone. Such tumors arise rarely, grow slowly, and express low levels of pigmentation genes. The timing of their appearance was consistent with a single step stochastic event, but no evidence could be found that it required de novo mutation, suggesting instead the involvement of an epigenetic transition. Single-cell transcriptomic analysis revealed such tumors to be heterogeneous, including a minor cell type we term LNM ( L ow-pigment, N eural- and extracellular M atrix-signature) that displays gene expression resembling "neural crest"-like cell subsets detected in the fast-growing tumors of more heavily-mutated mice, as well as in human biopsy and xenograft samples. We provide evidence that LNM cells pre-exist in normal skin, are expanded by Braf activation, can transition into malignant cells, and persist with malignant cells through multiple rounds of transplantation. We discuss the possibility that LNM cells not only serve as a pre-malignant state in the production of some melanomas, but also as an important intermediate in the development of drug resistance.

2.
Nature ; 618(7966): 808-817, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37344645

RESUMO

Niche signals maintain stem cells in a prolonged quiescence or transiently activate them for proper regeneration1. Altering balanced niche signalling can lead to regenerative disorders. Melanocytic skin nevi in human often display excessive hair growth, suggesting hair stem cell hyperactivity. Here, using genetic mouse models of nevi2,3, we show that dermal clusters of senescent melanocytes drive epithelial hair stem cells to exit quiescence and change their transcriptome and composition, potently enhancing hair renewal. Nevus melanocytes activate a distinct secretome, enriched for signalling factors. Osteopontin, the leading nevus signalling factor, is both necessary and sufficient to induce hair growth. Injection of osteopontin or its genetic overexpression is sufficient to induce robust hair growth in mice, whereas germline and conditional deletions of either osteopontin or CD44, its cognate receptor on epithelial hair cells, rescue enhanced hair growth induced by dermal nevus melanocytes. Osteopontin is overexpressed in human hairy nevi, and it stimulates new growth of human hair follicles. Although broad accumulation of senescent cells, such as upon ageing or genotoxic stress, is detrimental for the regenerative capacity of tissue4, we show that signalling by senescent cell clusters can potently enhance the activity of adjacent intact stem cells and stimulate tissue renewal. This finding identifies senescent cells and their secretome as an attractive therapeutic target in regenerative disorders.


Assuntos
Cabelo , Melanócitos , Transdução de Sinais , Animais , Camundongos , Cabelo/citologia , Cabelo/crescimento & desenvolvimento , Folículo Piloso/citologia , Folículo Piloso/fisiologia , Receptores de Hialuronatos/metabolismo , Melanócitos/citologia , Melanócitos/metabolismo , Nevo/metabolismo , Nevo/patologia , Osteopontina/metabolismo , Células-Tronco/citologia
3.
Sci Rep ; 12(1): 2054, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35136154

RESUMO

Monitoring new mutations in SARS-CoV-2 provides crucial information for identifying diagnostic and therapeutic targets and important insights to achieve a more effective COVID-19 control strategy. Next generation sequencing (NGS) technologies have been widely used for whole genome sequencing (WGS) of SARS-CoV-2. While various NGS methods have been reported, one chief limitation has been the complexity of the workflow, limiting the scalability. Here, we overcome this limitation by designing a laboratory workflow optimized for high-throughput studies. The workflow utilizes modified ARTIC network v3 primers for SARS-CoV-2 whole genome amplification. NGS libraries were prepared by a 2-step PCR method, similar to a previously reported tailed PCR method, with further optimizations to improve amplicon balance, to minimize amplicon dropout for viral genomes harboring primer-binding site mutation(s), and to integrate robotic liquid handlers. Validation studies demonstrated that the optimized workflow can process up to 2688 samples in a single sequencing run without compromising sensitivity and accuracy and with fewer amplicon dropout events compared to the standard ARTIC protocol. We additionally report results for over 65,000 SARS-CoV-2 whole genome sequences from clinical specimens collected in the United States between January and September of 2021, as part of an ongoing national genomics surveillance effort.


Assuntos
COVID-19/genética , Genoma Viral , Mutação , SARS-CoV-2/genética , Sequenciamento Completo do Genoma , Humanos
4.
Elife ; 92020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33047672

RESUMO

Mutational activation of the BRAF proto-oncogene in melanocytes reliably produces benign nevi (pigmented 'moles'), yet the same change is the most common driver mutation in melanoma. The reason nevi stop growing, and do not progress to melanoma, is widely attributed to a cell-autonomous process of 'oncogene-induced senescence'. Using a mouse model of Braf-driven nevus formation, analyzing both proliferative dynamics and single-cell gene expression, we found no evidence that nevus cells are senescent, either compared with other skin cells, or other melanocytes. We also found that nevus size distributions could not be fit by any simple cell-autonomous model of growth arrest, yet were easily fit by models based on collective cell behavior, for example in which arresting cells release an arrest-promoting factor. We suggest that nevus growth arrest is more likely related to the cell interactions that mediate size control in normal tissues, than to any cell-autonomous, 'oncogene-induced' program of senescence.


Melanocytes are pigment-producing cells found throughout the skin. Mutations that activate a gene called BRAF cause these cells to divide and produce melanocytic nevi, also known as "moles". These mutations are oncogenic, meaning they can cause cancer. Indeed, BRAF is the most commonly mutated gene in melanoma, a deadly skin cancer that arises from melanocytes. Yet, moles hardly ever progress to melanoma. A proposed explanation for this behavior is that, once activated, BRAF initiates a process called "oncogene-induced senescence" in each melanocyte. This process, likened to premature aging, is thought to be what causes cells in a mole to quit dividing. Although this hypothesis is widely accepted, it has proved difficult to test directly. To investigate this notion, Ruiz-Vega et al. studied mice with hundreds of moles created by the same BRAF mutation found in human moles. Analyzing the activity of genes in individual cells revealed that nevus melanocytes that have stopped growing are no more senescent than other skin cells, including non-mole melanocytes. Ruiz-Vega et al. then analyzed the sizes at which moles stopped growing, estimating the number of cells in each mole. The data were then compared with the results of a simulation and mathematical modeling. This revealed that any model based on the idea of cells independently shutting down after a number of random events could not reproduce the distribution of mole sizes that had been experimentally observed. On the other hand, models based on melanocytes acting collectively to shut down each other's growth fit the observed data much better. These findings suggest that moles do not stop growing as a direct result of the activation of BRAF, but because they sense and respond to their own overgrowth. The same kind of collective sensing is observed in normal tissues that maintain a constant size. Discovering that melanocytes do this not only sheds light on why moles stop growing, it could also help researchers devise new ways to prevent melanomas from forming.


Assuntos
Comunicação Celular , Melanócitos/metabolismo , Nevo Pigmentado/genética , Animais , Camundongos , Nevo , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo
5.
Pigment Cell Melanoma Res ; 33(2): 279-292, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31562697

RESUMO

MITF, a gene that is mutated in familial melanoma and Waardenburg syndrome, encodes multiple isoforms expressed from alternative promoters that share common coding exons but have unique amino termini. It is not completely understood how these isoforms influence pigmentation in different tissues and how the expression of these independent isoforms of MITF is regulated. Here, we show that melanocytes express two isoforms of MITF, MITF-A and MITF-M. The expression of MITF-A is partially regulated by a newly identified retinoid enhancer element located upstream of the MITF-A promoter. Mitf-A knockout mice have only subtle changes in melanin accumulation in the hair and reduced Tyr expression in the eye. In contrast, Mitf-M-null mice have enlarged kidneys, lack neural crest-derived melanocytes in the skin, choroid, and iris stroma, yet maintain pigmentation within the retinal pigment epithelium and iris pigment epithelium of the eye. Taken together, these studies identify a critical role for MITF-M in melanocytes, a minor role for MITF-A in regulating pigmentation in the hair and Tyr expression in the eye, and a novel role for MITF-M in size control of the kidney.


Assuntos
Homeostase , Fator de Transcrição Associado à Microftalmia/metabolismo , Pigmentação , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Olho/patologia , Células HEK293 , Homeostase/efeitos dos fármacos , Humanos , Melanócitos/efeitos dos fármacos , Melanócitos/metabolismo , Melanócitos/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fator de Transcrição Associado à Microftalmia/genética , Fenótipo , Pigmentação/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Isoformas de Proteínas/metabolismo , Receptor alfa de Ácido Retinoico/metabolismo , Retinoides/farmacologia
6.
Nat Commun ; 10(1): 650, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30737373

RESUMO

During wound healing in adult mouse skin, hair follicles and then adipocytes regenerate. Adipocytes regenerate from myofibroblasts, a specialized contractile wound fibroblast. Here we study wound fibroblast diversity using single-cell RNA-sequencing. On analysis, wound fibroblasts group into twelve clusters. Pseudotime and RNA velocity analyses reveal that some clusters likely represent consecutive differentiation states toward a contractile phenotype, while others appear to represent distinct fibroblast lineages. One subset of fibroblasts expresses hematopoietic markers, suggesting their myeloid origin. We validate this finding using single-cell western blot and single-cell RNA-sequencing on genetically labeled myofibroblasts. Using bone marrow transplantation and Cre recombinase-based lineage tracing experiments, we rule out cell fusion events and confirm that hematopoietic lineage cells give rise to a subset of myofibroblasts and rare regenerated adipocytes. In conclusion, our study reveals that wounding induces a high degree of heterogeneity among fibroblasts and recruits highly plastic myeloid cells that contribute to adipocyte regeneration.


Assuntos
Adipócitos/citologia , Adipócitos/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Análise de Célula Única/métodos , Pele/citologia , Células-Tronco/citologia , Animais , Western Blotting , Células Cultivadas , Feminino , Masculino , Camundongos , Análise de Sequência de RNA , Células-Tronco/metabolismo , Cicatrização/fisiologia
7.
Cell Rep ; 18(10): 2331-2342, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28273450

RESUMO

Melanomas accumulate a high burden of mutations that could potentially generate neoantigens, yet somehow suppress the immune response to facilitate continued growth. In this study, we identify a subset of human melanomas that have loss-of-function mutations in ATR, a kinase that recognizes and repairs UV-induced DNA damage and is required for cellular proliferation. ATR mutant tumors exhibit both the accumulation of multiple mutations and the altered expression of inflammatory genes, resulting in decreased T cell recruitment and increased recruitment of macrophages known to spur tumor invasion. Taken together, these studies identify a mechanism by which melanoma cells modulate the immune microenvironment to promote continued growth.


Assuntos
Melanoma/genética , Melanoma/imunologia , Mutação/genética , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/imunologia , Microambiente Tumoral/imunologia , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Contagem de Células , Proliferação de Células , Haploinsuficiência/genética , Humanos , Mutação com Perda de Função , Macrófagos/patologia , Melanoma/patologia , Camundongos , Invasividade Neoplásica , Metástase Neoplásica , Nevo/genética , Nevo/patologia , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias Cutâneas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...